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ABSTRACT

Lattice gauge theory, formulated in terms of invariant inte-
grals over group elements on lattice bonds, benefits from many
group theoretical notions. Gauge invariance provides an enormous
symmetry and powerful constraints on expectation values. Strong
coupling expansions require invariant integrals over polynomials in
group elements, all of which can be evaluated by symmetry con-
siderations. Numerical simulations involve random walks over the
group. These walks automatically generate the invariant group
measure, avoiding explicit parameterization. A recently proposed
overrelaxation algorithm is particularly efficient at exploring the
group manifold. These and other applications of group theory to.

lattice gauge fields are reviewed in this talk.
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At first, lattice gauge theory seems like a natural topic for discussion at a

conference on group theory. Indeed, in our large scale numerical simulations we

store and manipulate thousands of group elements in computer memory. On the
other hand, much of this work is rather tedious writing and debugging of computer
programs. When actually working on these topics the abstract nature of much of
group theory seems rather remote. On still further reflection, however, we actually
use many consequences of the fact that our variables are group elements. It is some

of these that I will try to emphasize in this talk.

I begin by defining lattice gauge theory [1]. For simplicity I start with a four
dimensional hypercubic lattice. For definiteness, assume that the lattice has N*
sites and has periodic boundary conditions. For every ordered nearest neighbor
pair of sites (¢,7) on this lattice, I have a bond variable U;; which is an element
of the gauge group G. To study the theory of the strong interactions, where the
gauge fields are the gluons which bind quarks into hadrons, we are interested in
the gauge group SU (3). For the bond considered in the reverse direction, the
associated element is Uj; = Ugl. I will assume that G is a compact unitary group.
Thus 1 consider a configuration space which consists of 4 x N* group elements.

Associated with every configuration of this system is an action

S=Y_ (1 —~ %Re TrU,,) . (1)

Here the trace is in some representation, usually the fundamental, of the gauge
group, and n is the dimension of the matrices in that representation. The sum is
over all elementary squares, or “plaquettes,” p, and U, denotes an ordered product
of the fundamental link variables around the given plaquette. Because of the trace
it does not matter on which corner of the plaquette the product starts. Because of
the real part being taken in Eq. (1) and because the grdup is unitary, the direction

taken around the square is unimportant.

The next step is to place the action into a Boltzmann weight and study the cor-

responding statistical mechanics of this system of group elements. Thus I consider
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the partition function
7= f (dU) &P, )
The parameter 3 is proportional to the inverse square of the bare gauge coupling

go used in conventional perturbative studies. For the gauge group SU (n) the

relation is
B =2n/g}. (3)

The expectation value for some function F of the gauge variables is
(F) = 271 [ (dU) F(U) 5. (4)

In these equations the integration is to be taken over all the link variables

using the invariant group measure. For compact groups this measure satisfies

/ dgf {g) = / dgf (99') = f dgf (¢'q) = [ dgf (¢7) (5)

where f (g) is an arbitrary function over the group. The measure is normalized
such that

/ dg1=1. (6)
Eq. (5) can be schematically written dg = d (gg’) =d(g'g) =d(g7").

In addition to the gauge fields on the links, one can readily add matter fields
which conventionally reside on the lattice sites. The interaction with the gauge
fields is easily constructed to display the gauge symmetries to be discussed below.
For simplicity, however, I will ignore such fields in this talk.

This completes the formal definition of a lattice gauge theory. The motiva-
tions for looking at this system can be found in the many reviews of the topic, for
example ref. [2]. Briefly, the classical continuum limit of the above action repro-
duces the Yang Mills fields and the integration over the links gives a regularized
Feynman path integral for the quantization of the system.

For the quantum theory the issue is less clear. I will take the point of view
that the continuum limit of lattice gauge theory, if it exists, is a definition of

quantized gauge fields. The phenomenon of asymptotic freedom does give some



useful information on how to take this limit. As the lattice spacing a is reduced
we will encounter the well known divergences of quantum field theory and the
coupling must be renormalized. This variation of the bare coupling with cutoff is

given by the renormalization group function

dgo

a——=7(g0) = Yoo + V198 + - .- (7)

Integrating this and expressing the lattice spacing as a function of the bare coupling
gives
1

a=+ (9270)—11/278 e~ 1/2700 (1+ 0 (a2)) (8)

where A is an integration constant and sets the overall scale of the theory.

When working on the lattice it is quite natural to measure masses in units
of the lattice spacing. If a particle has a finite mass m in the continuum limit,
then the dimensionless combination ma will show an exponential decrease with
the inverse coupling as in Eq. (8). The coefficient of this “scaling” behavior gives
the particle mass in units of A. Note that the factor of A will drop out of any
mass ratios. Indeed, in the continuum limit the pure gauge theory should make
parameter-free predictions for all dimensionless observables. When quarks are
added to the theory the only parameters are the quark masses (in units of A).

The action in Eq. (1) has an enormous symmetry. Suppose we associate an
arbitrary group element g; with every site : on our lattice. Using these, we can

construct a new link element on each bond
Ul = g:iUsjg7 7. (9)

Since the action involves the trace of link variables multiplied around closed loops,
the factors of g will cancel in the calculation of the action for the new links, which
will therefore give exactly the same action as the old. This exact local symmetry
is the gauge symmetry of the model. On our N* site lattce, the symmetry group
is the gauge group raised to the N* power.

For good observables we should look for gauge invariant operators. One such is

the trace of the product of link variables around a closed loop. The expectation of



this is the famous Wilson loop. Confinement in the pure gauge theory is signaled by
an exponential decrease with the minimal area enclosed by the loop. The coefficient
of this area law is a non-local order parameter which is useful for distinguishing
certain phases of lattice gauge models.

The area law for Wilson loops arises naturally in the strong coupling expansion.
In that approach group theory plays a major role. When the bare coupling becomes
large, the parameter 3 is small and one can consider a power series expansion of the
Boltzmann weight e #5. Any term in this expansion will involve various powers
of the link variables, which must be integrated over. For SU (n) the resulting
integrals can be done using a set of graphical rules which I will not go into here [3].
The net result for the expectation of a Wilson loop is that terms in the strong
coupling expansion will all vanish until enough powers of 3 are taken so that a
minimal surface with the loop as boundary can be tiled with plaquettes taken from
the Boltzmann factor. This factor of 8 raised to the area of the loop is precisely
the exponential suppression signaling confinement.

For the past several years research in lattice gauge theory has been dominated
by Monte Carlo simulations. The basic idea is to approximate the integral in
Eq. (4) by a sum over 2 finite number of configurations of the system with a
weighting proportional to the Boltzmann factor e #°. Using the formal analogy
with statistical mechanics, we wish to find a set of configurations typical of thermal
equilibrium.

For simplicity in the following discussion, consider just a single group element

7. Assume we wish to stochastically pick elements with a probability distribution

P.y (U) x e P50) (10)

where S (U) is some prescribed action. The differential measure to be used here
is the same invariant measure used for integration above. ‘

For groups such as SU (2) where the explicit measure is ra,the;' simple, it is
not difficult to generate elements with a particular distribution. At first it would

seem that for other groups with more complicated invariant measures it might be



quite difficult to generate elements with an arbitrary distribution. It turns out,
however, that by doing a random walk over the group manifold this can be quite
easy.

Given an ensemble of group elements uniformly distributed over the group,
the invariance of the measure insures that if all elements in this set are multi-
plied by some fixed group element, then the new ensemble will also be uniform.
This fact provides a way to obtain such a uniform distribution. Suppose we have
a set of factors which upon repeated multiplication can cover the group. In a
practical simulation these factors could be stored in a finite table. Then we can
construct a Markov chain of group elements by starting with an arbitrary element
and repeatedly multiplying the current element U by randomly chosen factors.
Asymptotically this sequence will uniformly cover the group.

Actually, rather than a uniform covering, Eq. (10} asks for a weighted distri-
bution. This can be readily accomplished by modifying the above Markov chain.
This is usually done by an accept/reject procedure as suggested by Metropolis et
al. [4]. To proceed it is useful to introduce an auxiliary group element V. With
this element I associate some simple action S (V). Suppose further that this action

satisfiles § (V) = § (V=1). A particularly simple choice in practice is
S (V)= —kReTr (V) (11)
I now define a “Hamiltonian”
HUV)=5{U)+8§ (V) (12)

In terms of this, I wish to find pairs of group elements U and V' with probability

Py (U, V) o e PH (13)

Ignoring the auxiliary variable V', I have an appropriate distribution for U. I am
pursuing an analogy where U corresponds to some canonical variable z and V to a
conjugate momentum p. The action S (U) corresponds to a potential energy V (z)

and the Hamiltonian to V (z) + p?/2.



Now consider a simultaneous trial change of both U and V to
U'=VF{U)U

V' = (F W) VF W)

Here F (U) is a group element which can have an arbitrary dependence on U. I

(14)

refer to it as a “driving force.” This trial change is then to be accepted with a

conditional probability
P (U,V - U',V') = min [1, e—ﬂ(H'*H)] . (15)

If the change is rejected, then U and V retain their old values. This scheme
of conditionally accepting trial changes guarantees that an equilibrium ensemble
remains in equilibrium. Indeed, it can be readily verified that this is sufficient to
insure that a non-equilibrium ensemble will be brought closer to equilibrium.
The change of variables indicated in Eq. (14) has several useful properties.
First, it is easily inverted by merely iterating the equation. Second, the transfor-
mation preserves volumes in the direct product space of the group with itself. That
is, given an arbitrary function 2 (U, V'), we can repeatedly use group invariance to

derive

/dU dV h(U, V) =

/dU dvh(U, vT) _

/dUdV-h(U V) =

/dUth(VU (Fvuyn)t) =
(

/dUth

[ dU dv h (U, V)

or, schematicall&, dU dV = dU'dV'. Note that no explicit representation of the

(16)

VF(U)U, (F(VFU)U) V FO)') =

group measure is needed.
This preservation of phase space volumes gives rise to a useful identity on the

corresponding energy change. Consider the partition function

= f dU' v e PE(UV), (17)



Changing variables to U and V and adding and subtracting H (U, V) in the expo-

nent gives
Z= j dU dv ¢~PH (~F(H'~H) (18)

where H and H' denote H (U,V) and H (U', V'), respectively. Dividing by Z, we
find
(e PH'-H)y = 1 (19)

where the expectation is over all U and V with the equilibrium distribution of

Eq. (13). Because the exponential function is convex, Eq. (19) immediately implies
(H'-H)>0 (20)

with equality only possible if the dynamics is exactly energy comserving. If we
consider small changes in energy, a useful consequence of Eq. {18) follows by

expanding the exponential
(H'— H) = g((H’~H)2) ro (-8, (21)

After performing the above Monte Carlo process on the U and V variables, it
is generally advantageous to “refresh” the auxiliary variables V. This can be done
by another Monte Carlo process on the V variables alone, or, in the case when
there are several V elements, randomly permuting them.

This framework describes a large class of algorithms. If the force F (U) is
always taken to be the identity element, the procedure is the standard unbiased
Metropolis et al. [4] algorithm with

U'=vU

22
vi=vT, ( )

In this case the V variables are usually selected randomly from a table which
should contain the inverse of each of its elements.

Another potentially useful scheme for picking the driving force was discussed in
refs. [5-6]. This approach is a generalization of the overrelaxation ideas discussed

in ref. [7]. Suppose there is some straightforward way to find a group element



Up which approximately minimizes the action S (Up). Suppose further that Up is

obtained with no explicit dependence on the current element U. If we select
FU) = (UU™)?, (23)

then the trial change is
U'=VUU ',
(24)

v' = (FivE).
In some sense the new U lies centered about the “opposite side” of Up from U.
The noise introduced by V plays a rather minor role and can be eliminated by
taking V = I.

This choice of trial update produces a rather large change in U while, assuming
the action is reasonably symmetric around Up, resulting in only a rather small
change in the action. Thus one simultaneously obtains a high acceptance rate and
a rapid flow through configuration space. In addition, recent analyses by Adler
8] and Neuberger [9] indicate that overrelaxation can help reduce the increase of
correlation times as a critical point is approached. Tests with this algorithm [6],
[10] indicate a possible savings of order a factor of three in computer time over
the conventional Metropolis et al. [4] algorithm for pure SU (3} gauge theory.

An interesting class of algorithms arises if we take S (V') so that the distribution
of V is highly peaked near the identity. It is then possible to choose F' so that

changes in the energy are of order the cube of the change in the group element.

To see this more explicitly, parameterize the link variables
U =4l (25)

where the matrices A generate the Lie algebra for the group. Now take for the

driving force

as :
= —FEA  ———
F =ezxp ( te BA) , (26)

and for the auxiliary action take

§(V) = %Re T V. (27)



10

This choice will make
| H —H=0/(&7) (28)

which implies, by Eq. (21},
(H'— H) = 0 (%) (29)

Thus for small ¢ we expect a rather high acceptance rate. Leaving off the ac-
cept/reject step gives an approximate algorithm which becomes more exact as the
peaking of V around the identity becomes stronger. With frequent refreshing of
the V distribution, we obtain a discretization of the Langevin equation. In this
discretization, € plays the role of the time step and V provides the noise term.
The stmple uncorrected Langevin approach to lattice gauge theory has been advo-
cated in refs. [11-12]. Making the algorithm exact with an accept-reject step was
proposed in reference [13]. This implementation of the Langevin evolution using
group elements for the noise was recently tested for SU (3) lattice gauge theory
[14].

An interesting variation is the hybrid approach originally discussed in [15].
The addition of the accept reject step to make this algorithm exact was discussed
in reference [16|. Here we consider Eq. (14) followed by an inversion of V. This
combination is then iterated N,,;. times before applying the accept-reject proce-
dure. This iteration generates an approximately microcanonical trajectory which
still exactly preserves areas in phase space. For the driving force use Eq. (26)
and let N,,;. be of order 1//e. After each trajectory and accept-reject step, the
V matrices should be refreshed. The advantage of this procedure is that on a
trajectory the random walk of the Langevin approach is replaced by a continued
motion in the direction of the slowly evolving V matrices. This gives a more rapid
final flow through phase space. This is partially compensated by the need for a
smaller €, because now a given trajectory has '

H — H =0 (e
(30)
(H' — H) = 0 (%)

Nevertheless there is a net overall gain.
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I will now make a few brief remarks on including fermionic fields in our simu-

lations. In this case the generic partition function becomes

7 = [ (a0) (@4"dw) ezp (-5 (U) — " M) (31)

where Sy is the pure gauge actgion, ¢* and ¢ are anticommuting variables and M
is some matrix coupling the fermions and gauge fields. To set up a Monte Carlo
simulation, the fermionic fields are integrated out and replaced by an integral
over commuting fields interacting with the inverse of the fermionic matrix. More

precisely, Eq. (31) is rewritten

Z= / (dU7) det (M) e~ %

= f (dU) (dd) exp (- 50 — (M719)" /2) .

The difficulty with this is that M ~1¢ is rather tedious to calculate. All practical

(32)

schemes perform this inversion only once per sweep of the gauge variables. While
most schemes make a small step approximation, this can be avoided by a global
accept-reject step following an approximate full sweep. This will still require a
small step size to maintain a reasonable acceptance, but eliminates systematic
errors. The value of the Langevin and hybrid approaches become pa.rticulzirly
clear in these schemes. A recent analysis [17] shows that an unbiased global
updating requires computer time growing as the square of the system volume.
The Langevin approach reduces this to a V*/3 growth, and the corrected hybrid
scheme gives a V'5/4 behavior. Recently there has been extensive activity testing
these algorithms.

To conclude, I hope I have been able to show you that lattice gauge theory
is not just writing computer programs, but involves some elegant group theory as
well. The groupdtheory we use, however, differs somwhat from that seen in particle
theory. In particular, details of higher representations of the gauge group only play

a minor role, while the properties of invariant group integration are crucial.
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